
Test Method for Encoder and Decoder Circuits used in
Communication Networks

Rita Jain* and Mahendra Kumar Gupta**

Department of Electronics and Communication Engineering,

*Lakhmi Narayan Collage of Technology, (LNCT), Bhopal, (MP), India.

**MANIT, Bhopal, (MP), India

(Recieved 25 March 2012 Accepted 10 April 2012)

ABSTRACT : Transistor density on integrated circuit doubles every two year. For decades, Intel has met this
challenge and has made Moore's Law a reality. As transistor counts climb so does the ability to increase device
complexity and integrate many capabilities onto a chip. With increase in the functional complexity on the chip,
accessing of internal sub–circuits of chip for testing purposes is becoming very difficult, as they are not directly
accessible through primary inputs. So, the testing of chip is also becoming difficult, very time consuming and
costly process with increasing cost. To reduce the cost of testing of chips by costly Automatic Test Equipment
(ATE), Built–In–Self–Test (BIST) technique has emerged as a cheap alternative.

Keywords: Testing, Built–in Self–Test, Encoder, Decoder, Block Code, Linear Feedback Shift Register (LFSR), Pseudo
Random Bit Sequence (PRBS) Generator.

International Journal of Electrical, Electronics and
Computer Engineering 1(1): 19-27(2012)

I

J E
E

CE

I. INTRODUCTION

We use various electronics gadgets in our day to day
life. At times it has been observed that these gadgets do
not perform as desired. There can be many reasons for
malfunctioning.

Technological development is enabling the production
of increasingly complex electronic systems. All such systems
must be verified and tested to guarantee their correct
behavior. As the complexity grows, testing becomes one of
the most significant factors that contribute to the total
development cost. Testing takes up to 35% of all costs in
the Integrated Circuit (IC) design and manufacturing process.
Test, diagnosis and repair costs of complex electronic
systems reach often 40–50% of the total product realization
cost and it is projected that the test of a transistor will be
more expensive than manufacturing it [1].

Thus, if a fault can be detected at chip or board level,
then significantly larger costs per fault can be avoided. This
is the reason why the focus is now on providing testability
at chip, module or even at board level. The fault takes on
10X Cost rule, the need of an early detection of fault has
forced most designers to implement BIST technique to their
designs.

II. INCREASING PROBLEM OF TEST

Ever Expanding Chip : IC technology has shown an
Compounded Annual Growth Rate of over 55% over past
50 years. This incredible growth has come from steady
miniaturization of transistors and improvements in
manufacturing processes. [2]

The Shrinking Boards: Yesterday there were few
components on chip and pin count used to be very less.
Most ICs were based on Plated Through Hole (PTH)
technology and the dual–in line package provided more
access to each and every pin.

Problem with Multi–layer Printed Circuit Board (PCB)
: With SMT and BGA Packages, PCB has to be multilayered.
The move from PTH to SMT packaging limits the physical
access to every point on the target land [2].

Long Test Application Time : To test a combinational
logic circuit with n inputs the truth table contains 2n rows.
Each of the n inputs can be independently assigned a value
of 0 or 1 as test vectors to give a total of 2n different test
vectors. For larger circuits, the amount of time required to
apply all of the test vectors becomes astronomical [2].

The situation for sequential circuits is even worse
because the output of a sequential circuit depends, not only
on the current inputs, but also on the internal state of all
the memory elements.

III. DESIGN FOR TESTABILITY

Improvement in circuit testability can be achieved by
decomposing the design into smaller circuit modules that
can be tested more easily. Circuit modules are easy to test
when only a few test vectors are needed to ensure that the
module is fault free [3]. Thus, there must be a testing
strategy that works directly on the nodes, i.e. the test vector
generator and response analyser must be available on the
chip. Design for testability is accomplished when circuit
designers use techniques that provide good observability
and controllability for all nodes in the circuit.

ISSN No. (Online) : 2277-2626

20 Jain and Gupta

IV. BUILT IN SELF TEST

BIST is a testing technique in which unit (circuit/chip/
board/system) under test is capable of testing itself. BIST
significantly reduces off–chip communication by
accommodating test generation and response evaluation
hardware on the chip. Therefore, the limited I/O access
constraint is eased. It eliminates much of the test pattern
generation and simulation process. Well–organized BIST also
partitions the circuit into pieces of moderate size to reduce
the complexity of test generation and fault simulation.

Storing all of the test vectors internally would take extra
circuitry. Instead, a Pseudo Random Bit Sequence (PRBS)
generator is used as an Test Pattern Generator (TPG) to
generate input vectors and a Signature Analyzer (SA) is
used as a Test Response Analyser (TRA) on the outputs.
The PRBS Generator and Signature Analyzer (SA) can be
implemented using Linear Feedback Shift Registers (LFSR)
which requires only a small number of logic gates and shift
registers. This BIST Architecture is given in Fig. 1. A generic
approach to implement BIST in a circuit is discussed in
Fig. 2.

Fig. 1. BIST Architecture. BIST is a method of design, whereby
the mission circuit tests itself. The test patterns are generated

and applied to the unit under test (UUT) and a response
analyzer declares the result.

Fig. 2. A generic approach to BIST implementation in a circuit.
Input MUX is used to switch between primary inputs in the

normal mode and test patterns from TPG in the test
mode. The response of a BIST–driven circuit is

compared to its expected response to
determine whether the circuit

is operating correctly.

Different methods are used for implementing BIST. Each
method has its own set of trade–offs and design
considerations. If the BIST design is not appropriate for the

IC it is testing, then it can actually be a detriment to the
design. Fig. 2 describes a generic approach to BIST
implementation in a circuit. In normal mode the Circuit Under
Test (CUT) is driven by external primary inputs, but in test
mode the patterns are generated by built in TPG and applied
to the circuit. The response of the circuit is observed by
the test controller to the applied input test pattern.

V. LFSR FUNDAMENTALS

A LFSR is the heart of any digital system that generates
PRBS with applications ranging from cryptography and bit–
error–rate measurements, to wireless communication systems
employing spread spectrum or CDMA techniques.

A. LFSR Generator Implementations

LFSR as given in Fig. 3 and Fig. 4 is a shift register
which use a feedback to modify itself on each rising edge
of the clock. The feedback causes the value in the shift
register to cycle through a set of unique values. The length
of the pseudo–random sequence is dependent on the length
of the shift register and the number and the position of the
feedback taps. The number and the position of the taps are
represented by a polynomial. The choice of LFSR length,
gate type, LFSR type, maximum length logic, and tap
positions allows the user to control the implementation. And
the feedback of the LFSR, controls the sequence of repeating
values the LFSR will iterate through.

LFSR can be implemented using either the Galois or
Fibonacci configuration of gates and registers. The order of
the Galois weights is opposite that of the Fibonacci weights.
The two LFSR implementations produce the same sequence
when identical feedback weights are given.

Fig. 3. Fibonacci Implementation of LFSR. In Fibonacci
Implementation of LFSR the outputs from some of

the registers are Exclusive–ORed/NORed
with each other and fed back to the

input of the shift register. In this figure
these outputs are X12, X22, X32 and X42.

Fig. 4. Galois Implementation of LFSR. In Galois
Implementation of LFSR, the XOR/XNOR
gates are placed between the registers.

In this figure these outputs.
are X11, X21, X31 and X41.

Jain and Gupta 21

The simulated waveforms of the LFSR as shown in fig.
3 and Fig. 4 are placed in Fig. 5. If characteristic polynomial
is same the output of both implementations is same. .

The Galois form is generally faster than the Fibonacci
in hardware due to the reduced number of logic gates in
the feedback loop, thus making it the favoured form. For
LFSR with only a few taps, the Fibonacci implementation
will generally achieve a faster clock speed than its Galois
counterpart. Although faster for a small number of taps, the
Fibonacci implementation's performance degrades as the
number of taps increases. The Galois implementation,
however, sees hardly any performance loss with an increase
in the number of taps. So, for a basic LFSR, the Galois
implementation is recommended to achieve desired speed
results for more than 5 taps [4].

 Fig. 5. Simulated results of both implementations. The outputs
X12, X22, X32 and X42 are of Fibonacci Implementation and

X11, X21, X31 and X41 are of Galois Implementation.

Due to static and dynamic randomness property LFSR
finds its place in the basic BIST architecture. LFSR not only
generates the pseudo random bit sequences (PRBS) but also
act as polynomial multiplier and divider. This property is
used for correlation and detection of faults if any.

VI. THE IMPORTANCE OF LINE CODING IN
TELECOMMUNICATION SYSTEMS

Line Coding is needed to transmit digital information;
more specifically, binary data over a digital repeatered line.
In a digital communication system, there exists a known set
of symbols to be transmitted. At the receiver the binary
data is recreated into a set of symbols by decoding the
digital signal. The detected valid symbols are transmitted
where as invalid symbols are discarded after declaring an
error signal. A variety of line codes are available for different
channel characteristics, different applications and
performance requirements.

 The dominant considerations effecting the choice of a
line code are: 1) Timing, 2) DC content/component, 3) Power
Spectrum, 4) Performance Monitoring, 5) Baseline Wandering
6) Probability of Error, and 7) Transparency. [5]

Commonly used line encoding techniques are Return–
to–Zero (RZ), Non–Return–to–Zero (NRZ), bipolar, unipolar,

Manchester Encoding, Differential Manchester Encoding,
Alternate Mark Inversion (AMI), multi–level, block codes
etc.

VII. BLOCK CODES

A block code generates a block of n coded bits from m
information bits and the coded word is known as mBnB
block code. The n–bit codeword can take on 2n possible
values corresponding to all possible combinations of the n
binary bits. 2m code words are selected from these 2n
possible code words, such that each m bit information block
is uniquely mapped to one of these 2n code words. Rest
2m–n code words are discarded as they represented invalid
code words and are declared as errors [1, 5, 9].

The rate of the code is Rc = n/m information bits per
codeword. If it is assume that code words are transmitted
across the channel at a rate of Rs symbols/second, Then
the information rate associated with an (m, n) block code is
Rb = Rc × Rs = n/m Rs bits/second. [6], [7].

VIII. IMPLEMENTATION OF THE LOGIC
DESIGN

Xilinx ISE 10.1 is used for implementing LFSR, Encoder,
Decoder and Signature Analyser.

A. Concept of BIST Implementation on Encoder Decoder

This section describes the concept of BIST
implementation on an encoder decoder circuit used in
telecommunication. This encoder is designed to achieve all
the advantages of line encoding and also acts as an
multiplexer to combine two bit streams operating at bit rates
of 2.048 Mbps (2B) and 1.024 Mbps (1B). This 2B bit stream
carries the main information data (M_Data) whereas the 1B
bit stream can be used to transmit the supervisory data
(SV_Data) of the transmitting station. The designed encoder
is termed as 2B4B Encoder because it encodes 2 bits of
M_Data and 1 bit of SV_Data into 4 bits of coded data
(C_Data). At the receiver end, a 4B2B Decoder circuit is
used to decode and separate the two bit streams of 2B and
1B. Fig. 6 depicts this concept.

 BIST is implemented to test 2B4B Encoder and 4B2B
Decoder link. The status of Normal/Test signal on the control
input of 2:1 Multiplexer (MUX) decides which of the two
bit streams i.e. either M_Data or PRBS must be input to
2B4B Encoder. This Normal/Test signal acts as an enable
signal to the LFSR. Similary another 2:1 MUX inputs either
a PRBS or SV_Data to 2B4B Encoder at the second input.
The 2B4B Encoder after encoding, outputs C_Data which
acts as an input to 4B2B Decoder.

22 Jain and Gupta

Fig. 6. A concept used to implement BIST on an Encoder
Decoder Circuits.

The Normal/Test signal at the Signature Analyser
switches ON the on–board LFSR and compares the received
PRBS with the locally generated PRBS. This tests the circuit
thoroughly. If the two streams are same, then the output of
comparator is bit zero, it means the encoder – decoder
circuits on the chip are functioning logically. If the output
of comparator is bit one than any of the three circuits i.e
encoder or decoder or the link is malfunctioning. Two LFSRs
are used as a TPG to generate PRBS, one for M_Data and
other for SV_Data. The bit rate of C_Data is 4.096 Mbps.

B. Implementation of 2^9–1 PRBS Generator using LFSR

According to ITU–T PRBS generator is used to test
the communication system. 2^9–1 PRBS is constructed using

a LFSR having nine 1–bit D–flip–flops connected in a serial
fashion as shown in fig. 7. The outputs of flip–flops 5th
and 9th are XNORed and feedback to the input of LFSR.
The control input clear (CLR) is used to clear the LFSR
outputs and allows the LFSR to sequence pseudo randomly
with the clock (CLK_MAIN). The LFSR performs it proper
operation when its control input Enable (CHIP_EN) is high.
Otherwise, it holds the previous value. All the control inputs
are asynchronous. The outputs from all the flip–flops are
taken and named as PRBS1, PRBS2, PRBS3 to PRBS9.

Xilinx ISE 10.1 is used to design the LFSR. The
simulation results are shown in the fig. 9. To use this circuit
in other circuits, it is converted into a symbol as depicted
in fig. 8 and stored in the library for further use. The
simulation results show that the sequence so generated
repeats after 511 bits.

Fig. 7. Schematic Diagram of LFSR for generating
 2^9–1 PRBS. Nine outputs are obtained.

One from each D – Flip flop and are
named as PRBS1, PRBS2 to PRBS9.

Table 1.

Sl. No. 1–bit of SV_Data 2–bits of M_Data 4–bit C_Data
A4 A3 A2 Z3 Z2 Z1 Z0

1. 0 0 1 1 0 0 1

2. 0 1 0 1 0 1 0

3. 0 1 1 0 0 1 1

4. 1 0 0 1 1 0 0

5. 1 0 1 0 1 0 1

6. 1 1 0 0 1 1 0

Fig. 8. Schematic Symbol of 2^9–1 PRBS Generator
with nine outputs.

Fig. 9. Simulation results of 2^9–1 PRBS Generator
with nine outputs.

Jain and Gupta 23

C. Implementation of 2B4B Encoder [6], [7], [9], [10]

The 2B4B encoder module provides 3–bit to 4–bit
encoding. The technique is shown in Fig. 10. A serial–in–
parallel–out block is used to convert the serial bits of
M_Data into two parallel bits. One bit is taken from SV_Data.
These three parallel bits can have eight possible values that
are 000, 001, 010, 011, 100, 101, 110 and 111 and are called
datawords.

The bits of data word are identified as A4, A3, A2 (MSB
to LSB). The output of the 2B4B encoder is a 4–bit C_Data
and the bits are identified as Z3, Z2, Z1, Z0 (MSB to LSB).
Analysis shows that by adding a bit one or bit zero to the
data words, they get converted into 4–bit codeword. Since
block codes are balanced codes, i.e. each 3–bit sequence
after conversion must have equal numbers of ones and
zeros. It has been found that out of six only eight data
words will have two 1s and two 0s after conversion. These
data words are 001, 010, 011, 100, 101 and 110 and are
arranged according to the specific code translation map
given in Table I.

Fig. 10. Bock Diagram for 2B4B Encoding Technique.

A 4–bit sequence can produce sixteen code words. Out
of sixteen code words only six possess the DC balance
property of line encoding. The other ten code words have
either one 1s and three 0s, or, three 1s and one 0s. Thus

the two left out data words 000 and 111 could not be
converted to a balanced codeword. Such cases are handled
by a disparity controller.

D. Disparity Controller

Disparity is the difference between the number of 1s
and 0s in the codeword.

m No/Neutral disparity indicates the number of 1s and 0s are
equal in the codeword.

m Positive disparity indicates more 1s than 0s in the data
word. A disparity bit A1 is set (if reset) when the data word
is 111. This A1 bit is reset (if set) with next run of 111
after inverting the mapped codeword. This maintains DC
Balance on the line.

m Negative disparity indicates more 0s than 1s in the data
word. A disparity bit A0 is set (if reset) when the codeword
is 000. This A0 bit is reset (if set) with next run of 000
after inverting the mapped codeword. This maintains DC
Balance on the line.

To remove the disparity, the data word 111 is mapped
to code words 1011 and 0100 alternatively. Thus in two
runs of three ones balances the DC content on the line.
Similarly the disparity generated by data word 000 can be
balanced by mapping it into code words 0010 & 1101.
Disparity controller thus provides two outputs A1 and A0
which keep the record of mapping and in turn disparity.
Hence now input to the 2B4B encoder is of 5 bits and
output is of 4 bits. Table II is the 2B4B mapping table.

In order to maintain the synchronisation property of
block code, the code words like 0001, 1000, 1110 and 0111
has been avoided as they may lead to streams of four 1s or
0s or even greater.

Table 2: 2b4b Encoding Translation Map Having Unequal Numbers Of 1s And 0s.

S.No. 1–bit SV_Data & Disparity Bits 4–bit C_Data (Codeword) Comments
2–bits of M_Data

A4 A3 A2 A1 A0 Z3 Z2 Z1 Z0

 1 0 0 0 0 0 0 0 1 0 –ve disparity

 2 0 0 0 0 1 1 1 0 1 +ve disparity

 3 0 0 0 1 0 0 0 1 0 –ve disparity

 4 0 0 0 1 1 1 1 0 1 +ve disparity

 5 0 0 1 0 0 1 0 0 1 No disparity

 6 0 0 1 0 1 1 0 0 1 No disparity

 7 0 0 1 1 0 1 0 0 1 No disparity

 8 0 0 1 1 1 1 0 0 1 No disparity

 9 0 1 0 0 0 1 0 1 0 No disparity

10 0 1 0 0 1 1 0 1 0 No disparity

24 Jain and Gupta

11 0 1 0 1 0 1 0 1 0 No disparity

12 0 1 0 1 1 1 0 1 0 No disparity

13 0 1 1 0 0 0 0 1 1 No disparity

14 0 1 1 0 1 0 0 1 1 No disparity

15 0 1 1 1 0 0 0 1 1 No disparity

16 0 1 1 1 1 0 0 1 1 No disparity

17 1 0 0 0 0 1 1 0 0 No disparity

18 1 0 0 0 1 1 1 0 0 No disparity

19 1 0 0 1 0 1 1 0 0 No disparity

20 1 0 0 1 1 1 1 0 0 No disparity

21 1 0 1 0 0 0 1 0 1 No disparity

22 1 0 1 0 1 0 1 0 1 No disparity

23 1 0 1 1 0 0 1 0 1 No disparity

24 1 0 1 1 1 0 1 0 1 No disparity

25 1 1 0 0 0 0 1 1 0 No disparity

26 1 1 0 0 1 0 1 1 0 No disparity

27 1 1 0 1 0 0 1 1 0 No disparity

28 1 1 0 1 1 0 1 1 0 No disparity

29 1 1 1 0 0 1 0 1 1 +ve disparity

30 1 1 1 0 1 0 1 0 0 –ve disparity

31 1 1 1 1 0 1 0 1 1 +ve disparity

32 1 1 1 1 1 0 1 0 0 –ve disparity

The five input bits to the encoder are defined as bits
A4, A3, A2, A1 and A0. A4 is SV_Data at bit rate of 1024
Kbps and A3 and A2 are at main data bits at bit rate of
2048 Kbps and A0 and A1 are the disparity bits. Simulated
results are placed in Fig. 11. The RESET input, resets the
logic circuit. The next rising CLK_4096 after RESET is
deasserted and latches valid input data.

 Fig. 11. Simulated results for 2B4B Encoder. a[0], a[1], a[2],
a[3] and a[4] are inputs to the encoder whereas

b[0], b[1], b[2] and b[3] are the encoded outputs.

E. Implementation of 2B4B Encoder Circuit

Fig. 12. Simulated Results for 2B4B Encoder Circuit. The
M_Data is a PRBS data and C_Data is multiplexed

data of Z0, Z1, Z2 and Z3.

Fig 13 gives the circuit schematics of the 2B4B Encoder.
To obtain two parallel bits of M–Data, a serial to parallel
converter is made using two D–Flip Flops. To detect all
ones and all zeroes condition in the input bits, two triple
input AND gates are used. If all the three bits are ones,

Jain and Gupta 25

then there is generation of odd parity and output of AND
gate is high otherwise it is low. Similarly if all the three bits
are zero then the other AND gate is used. All the inputs are
inverted and the output of the AND gate is set to one else
it is low. Thus the outputs of the AND gates acts like a
clock signal and these signals are used to drive the two
counters.

The two AND gates and the two counters acts are a
disparity controller and the least significant bits (LSB) of
these counters are termed as A1 and A0. All the five bits
A4, A3, A2, A1 and A0 are given to 2B4B Encoder which is
designed using VHDL. The output of the encoder is parallel
data bits Z3, Z2, Z1 and Z0. These four bits are converted
into serial stream by using a 4:1 multiplexer. Thus the output
of multiplexer is C_Data.

F. Implementation of 4B2B Decoder [6], [7], [9], [10]

Fig. 13. The circuit schematics of 2B4B Encoder Circuit.
PRBS9_EN is used as TPG. The serial bit stream of

M_Data is converted into parallel as A2, A3. The
SV_Data bit is A4 and the disparity generator

give A1 and A0. The outputs of 2B4B
Encoder are Z0, Z1, Z2 and Z3.

At the receiver end 4B2B decoder does the inverse
function by first converting the serial bit stream into parallel
by using a serial to parallel converter which is 1:4
demultiplexer. The input bits to the decoder are Y3, Y2, Y1
and Y0. The concept of 4B2B decoding is shown by a block
diagram of Fig. 14.

The decoded bits B3, B2 and B1 are information bits
A4, A3 and A2. In case of valid code words received, the
bits B2 and B1 are decoded as the information signal bits
A3 and A2, bit B3 is decoded as the supervisory information
bit A4 and is handled by microcontroller of the system
whereas bit B0 is decoded as error signal. Ten valid code
words will be transmitted but there is a probability that the
receiver receives any of the 16 code words. When the
decoder receives an unrecognized codeword, such as an
illegal codeword, it asserts the "Error Signal".

Fig. 14. Bock Diagram for 4B2B Decoding Technique.

By asserting the error signal, the decoder indicates that
an invalid code word has been received. The 4B2B decoding
translation map is given in table III. If several codes in a
row are received with errors, then the 4B2B decoder
assumes that synchronisation between the transceiver has
been lost and transmits all ones signal to the next networked
equipment as recommended in ITU–T standard G 708. The
circuit schematic of 4B2B decoder circuit is given in fig. 15.

The serial C_Data is converted into parallel data using
1:4 demultiplexer (DEMUX4). In order to remove the shifts
between bits and to provide 50% duty cycle, the output of
DEMUX4 is applied to a 4–bit shift register. The outputs of
shift register are Y3, Y2, Y1 and Y0. These four bits are
applied to 4B2B decoder, which decodes them into 1 bit of
SV_Data, 2 bits of M_Data and one bit of Error Signal. If
the received signal C_Data is error free the status of Error
Signal is low. A high on Error Signal indicates the received
data is in error. The simulated results are given in Fig. 16.

Table 3: 4b2b Decoding Translation Map.

S.No. 4–bit Codeword 3–bit Dataword Error Comments

Y3 Y2 Y1 Y0 B3 B2 B1 B0

 0 0 0 0 0 0 0 0 1 Bits in Error

 1 0 0 0 1 0 0 1 1 Bits in Error

 2 0 0 1 0 0 0 0 0 Error Free Bits

 3 0 0 1 1 0 1 1 0 Error Free Bits

26 Jain and Gupta

 4 0 1 0 0 1 1 1 0 Error Free Bits

 5 0 1 0 1 1 0 1 0 Error Free Bits

 6 0 1 1 0 1 1 0 0 Error Free Bits

 7 0 1 1 1 1 1 1 1 Bits in Error

 8 1 0 0 0 0 0 0 1 Bits in Error

 9 1 0 0 1 0 0 1 0 Error Free Bits

10 1 0 1 0 0 1 0 0 Error Free Bits

11 1 0 1 1 1 1 1 0 Error Free Bits

12 1 1 0 0 1 0 0 0 Error Free Bits

13 1 1 0 1 0 0 0 0 Error Free Bits

14 1 1 1 0 1 1 0 1 Bits in Error

15 1 1 1 1 1 1 1 1 Bits in Error

G.. Implementation of 4B2B Decoder Circuit

Fig. 15. Circuit Schematics of the 4B2B Decoder Circuit. The C_Data is applied at MUX_IN of DEMUX4.
The output of DEMUX4 is xlxn_389, xlxn_456, xlxn_457 and xlxn_458. Y0, Y1, Y2 and Y3 are

the parallel data without any shift and applied to 4B2B decoder, which after
decoding provide the outputs as B0, B1, B2 and B3.

Jain and Gupta 27

Fig. 16. Simulated results of the 4B2B Decoder Circuit. The
waveforms of the xlxn_389, xlxn_456,

xlxn_457, xlxn_458, B0, B1, B2 and B3 are shown.

IX. DESIGN IMPLEMENTATION
To implement the concept given in the fig. 6, the C_Data

i.e output of the 2B4B Encoder Circuit is connected to
C_Data of the 4B2B Decoder Circuit. The status on the
normal/test signal decides the mode of operation of the
system. The PRBS9_EN generates test patterns if the mode
is TEST. The multiplexer passes these test patterns to the
encoder. The output C_Data is applied to the decoder circuit.
A local TPG is enabled at the decoder end. The received bit
stream is compared with the locally generated bit stream.
The result of comparison verifies the total link. If both the
bit streams are same, it means that the link is healthy and
systems are also in good health, else need attention for
recovery. A test result for a healthy system is presented in
the Fig. 17. The input test pattern is available on A2 and
A3; output of decoder for these two signals is available on
B2 and B1.

Fig. 17. Simulated results for the concept given in block
diagram of fig. 6. The inputs to the 2B4B encoder are

A2, A3 and A4 and the corresponding outputs
of 4B2B Decoder are B1, B2 and B3. The output

signal B0 is continuously low which indicates
there is no error in the circuit. The above

results depict that output signals
are same as input.

X. CONCLUSION

This paper presents a design of block code encoder
and decoder circuit – a useful component for
telecommunications secondly it presents a new concept of
implementing BIST for encoder decoder circuit which can
be used for transmitting Network Management Signals over
telecommunication networks using block codes. The circuit
has been successfully designed on a breadboard and
simulated using VHDL. The outputs of both the designs
are as per concept and same.

REFERENCES

[1] Afaq Ahmad, "A Simulation Experiment on a Built–In Self
Test Equipped with Pseudorandom Test Pattern Generator
and Multi–Input Shift Register (MISR)," International
Journal of VLSI design & Communication Systems (VLSICS),
December 2010, Volume 1, Number 4, ISSN : 0976 – 1357
(Online : http://airccse.org/journal/vlsi/currissue.html) ; 0976
– 1527 (print).

[2] JTAG (IEEE 1149.1/P1149.4) Tutorial – Introductory AL
10 Sept.–97 1149.1(JTAG)–Tut.I–1 1997 TI Test
Symposium.

[3] Indradeep Ghosh and Niraj K. Jha. (December 1998). High–
level test synthesis: a survey. Integration, the VLSI Journal.
Volume 26(1–2): 1, Pages 79–99.

[4] Xilinx, Logi core, "Linear Feedback Shift Register," v3.0
DS257 (v1.0) March 28, 2003.

[5] Behrouz A Forouzan, "Data Communication and Networking,
IV Edition", The McGraw–Hill Companies, 2007pp 101 –
118.

[6] Lattice, "8b/10b Encoder/Decoder," Reference Design
RD1012, Nov. 2002.

[7] Actel, "Implementing an 8b/10b Encoder/Decoder for Gigabit
Ethernet in the Actel SX FPGA Family," Application Note
AC135, Oct. 1998.

[8] Xilinx, FPGA Basic Flow [online]. Available : http://
w w w. x i l i n x . c o m / i t p / x i l i n x 8 / h e l p / i s e g u i d e / h t m l /
ise_basic_flow.htm.

[9] Atef Abou El_Azm, "Circuits of Coder/Decoder and Error
Detection in 5B6B Transmission Code," Computers and
Communications, IEEE Symposium on, pp. 690, 2nd IEEE
Symposium on Computers and Communications (ISCC '97),
1997.

[10] Yong–Woo Kim, Beomseok Shin and Jin–Ku Kang, "High–
speed 8B/10B encoder design using a simplified coding table"
IEICE Electronics Express, Vol. 5(16): 581–585.

http://airccse.org/journal/vlsi/currissue.html
www.xilinx.com/itp/xilinx8/help/iseguide/html/

